<em id="t3tdf"></em>

        <sup id="t3tdf"><menu id="t3tdf"></menu></sup>
            <div id="t3tdf"></div>

              <sup id="t3tdf"></sup>
              <em id="t3tdf"><tr id="t3tdf"><mark id="t3tdf"></mark></tr></em>
              <em id="t3tdf"></em><dl id="t3tdf"><meter id="t3tdf"></meter></dl>

                [1]谭宝海,唐晓明,张凯.随钻声波测井的正弦脉冲激励方法和实验研究[J].测井技术,2018,42(06):629-633.[doi:10.16489/j.issn.1004-1338.2018.06.004]
                TAN Baohai,TANG Xiaoming,ZHANG Kai.Sine-wave Pulse Excitation Circuit Method and Experiment Study for LWD Acoustic Logging[J].WELL LOGGING TECHNOLOGY,2018,42(06):629-633.[doi:10.16489/j.issn.1004-1338.2018.06.004]
                点击复制

                随钻声波测井的正弦脉冲激励方法和实验研究()
                分享到

                测井技术[ISSN:1004-1338/CN:61-1223/TE]

                卷:
                第42卷
                期数:
                2018年06期
                页码:
                629-633
                栏目:
                方法研究
                出版日期:
                2018-12-31

                文章信息/Info

                Title:
                Sine-wave Pulse Excitation Circuit Method and Experiment Study for LWD Acoustic Logging
                文章编号:
                1004-1338(2018)06-0629-05
                作者:
                谭宝海唐晓明张凯
                中国石油大学华东地球科学与技术学院,山东青岛266580
                Author(s):
                TAN BaohaiTANG XiaomingZHANG Kai
                School of Geosciences, China University of Petroleum, Qingdao, Shandong 266580, China
                关键词:
                随钻声波测井声源激励推挽式功率放大频率带宽
                Keywords:
                LWD acoustic logging transducer excitation push-pull power amplifier frequency bandwidth
                分类号:
                P631.84
                DOI:
                10.16489/j.issn.1004-1338.2018.06.004
                文献标志码:
                A
                摘要:
                多极子随钻声波测井受钻铤直达波干扰影响严重,将声源激励频率控制在隔声体阻带内是获得高信噪比数据的重要方法传统单脉冲激励源因其谐振点工作和宽频特性难以满足要求针对这一问题,设计了基于推挽式功率放大结构的门控正弦波脉冲激励电路,包括发射主控制器信号发生半波整流功率放大脉冲变压器及高压储能等电路单元通过实验研究,激励同一换能器的声源频率相位和带宽均可控,实现了多极子模式的发射,并给出了声源周期数量设计的参考依据
                Abstract:
                Multipole LWD acoustic logging are affected seriously by direct waves along the drill collar. In order to obtain high SNR data, it is an effective method to control the frequency of excitation sources into the attenuation domains of the isolator. However, the traditional single pulse signals cannot meet the above demands for their broad frequencies and resonance working status. Therefore, this paper designs a gate sine-wave pulse excitation circuit based on push-pull power amplification structure to solve this problem. The circuit consists of an excitation controller, a signal generator, a detector, a power amplifier, a pulse transformer and a power storage circuit. Through experimental research, the frequency, phase and bandwidth of the sound source of the same transducer are all adjustable, which realizes the multi-pole mode emission and obtains the reference basis for the design of the number of sound source cycles.

                参考文献/References:

                1ARON J, CHANG S K, DWORAK R, et al. Sonic compressional measurements while drilling CݡSPWLA 35th Annual Logging Symposium. Houston, 1994.
                2KINOSHITA T, ENDO T, NAKAJIMA H, et al. Next generation LWD sonic tool Cݡ14th SPWLA Formation Evaluation Symposium of Japan. Japan, 2008.
                3JOYCE B, PATTERSON D, LEGGETT J, et al. Introduction of a new omni-directional acoustic system for improved real-time LWD sonic logging-tool design and field test results CݡSPWLA 42nd Annual Logging Symposium. Houston, 2001.
                4MARKET J, BILBY C. Introducing the first LWD crossed-dipole sonic imaging service J. Petrophysics, 2012, 53(3): 208-221.
                5TANG X M, DUBINSKY V, WANG T, et al. Shear-velocity measurement in the logging-while-drilling environment: modeling and field evaluations CݡSPWLA 43rd Annual Logging Symposium. Houston, 2002.
                6苏远大, 庄春喜, 邓林, 等. 随钻声波测井隔声体性能评价实验研究 J. 测井技术, 2011, 35(5): 402-405.
                7苏远大, 庄春喜, 唐晓明. 随钻声波测井钻铤模式波衰减规律研究与隔声体设计 J. 地球物理学报, 2011, 54(9): 2419-2428.
                8苏远大, 庄春喜, 唐晓明, 等. 一种刻槽式随钻声波测井隔声体的理论和实验研究 J. 地球物理学报, 2016, 59(12): 4521-4528.
                9卢俊强, 鞠晓东, 成向阳. 多极子阵列声波测井仪的换能器激励方法 J. 高电压技术, 2009, 35(2): 324-328.
                10成向阳, 鞠晓东, 卢俊强, 等. 井下大功率多极子声波换能器激励源的设计 J. 中国石油大学学报(自然科学版), 2007, 31(6): 40-43.
                11张凯, 鞠晓东, 卢俊强, 等. 声波换能器激励变压器设计与激励波形影响因素分析 Cݡ中国声学学会全国声学学术会议. 南京: 2014.
                12蔡明飞, 师芳芳, 孔超, 等. 超声检测中常用激励波形的高精度相控发射实现 J. 应用声学, 2015, 34(6): 526-532.
                13成向阳, 陈雪莲, 谭宝海, 等. 一种带关断控制的声波激励信号放大器: CN103368507 P, 2013.
                14谭宝海, 张博, 郝仲田, 等. 一种用于随钻声波测井的声源激励装置: CN103233724 P, 2013.

                相似文献/References:

                [1]苏远大,庄春喜,邓林,等.随钻声波测井隔声体性能评价实验研究[J].测井技术,2011,35(05):402.
                SUYuanda,ZHUANG Chunxi,DENG Lin,et al.Experimental Research on Performance Evaluation of LWD Acoustic Isolator[J].WELL LOGGING TECHNOLOGY,2011,35(06):402.
                [2]尚海燕,周静,燕并男.声波钻杆信道及信息传输仿真研究[J].测井技术,2015,39(02):165.[doi:10.16489/j.issn.1004-1338.2015.02.007]
                SHANG Haiyan,ZHOU Jing,YAN Bingnan.On Simulation of Acoustic Drill String Channel and Information Transmission[J].WELL LOGGING TECHNOLOGY,2015,39(06):165.[doi:10.16489/j.issn.1004-1338.2015.02.007]
                [3]吴金平,陆黄生,张卫,等.用于随钻声波测井的圆弧片状压电振子[J].测井技术,2016,40(03):317.[doi:10.16489/j.issn.1004-1338.2016.03.012]
                WU Jinping,LU Huangsheng,ZHANG Wei,et al.Arc Plate-type Piezoelectric Vibrator Used in Acoustic Logging-while-drilling[J].WELL LOGGING TECHNOLOGY,2016,40(06):317.[doi:10.16489/j.issn.1004-1338.2016.03.012]

                备注/Memo

                备注/Memo:
                基金项目:国家自然科学基金面上项目随钻声波测井双源反激隔声方法及实验研究(41774138);国家自然科学基金青年基金项目基于反褶积最优化设计的双源反激过套管声波测井理论和方法研究(41804121) 第一作者:谭宝海,男,1978年生,讲师,从事石油测控仪器教学和研发工作E-mail:[email protected]
                更新日期/Last Update: 2018-12-31
                588Ʊ

                  <em id="t3tdf"></em>

                      <sup id="t3tdf"><menu id="t3tdf"></menu></sup>
                          <div id="t3tdf"></div>

                            <sup id="t3tdf"></sup>
                            <em id="t3tdf"><tr id="t3tdf"><mark id="t3tdf"></mark></tr></em>
                            <em id="t3tdf"></em><dl id="t3tdf"><meter id="t3tdf"></meter></dl>

                                <em id="t3tdf"></em>

                                    <sup id="t3tdf"><menu id="t3tdf"></menu></sup>
                                        <div id="t3tdf"></div>

                                          <sup id="t3tdf"></sup>
                                          <em id="t3tdf"><tr id="t3tdf"><mark id="t3tdf"></mark></tr></em>
                                          <em id="t3tdf"></em><dl id="t3tdf"><meter id="t3tdf"></meter></dl>